Workload Models for Systent.evel Timing Analysis:
Expressiveness vs. Analysis Efficiency

Nan Guan, MartirStiggeand\Wang Yi
Uppsala University, Sweden
Uppsala University, China

Complex Realime Systems

IR, o o wo

Input Stream

i R

Input Stream

Complex Realime Systems

0 R N B B SR

L S
Input Stream g o« \{ o L Output Stream
'l L Y \‘ 'l e ‘\ . __°

B BA DU 4SS W ELE. 2

Input Stream Output Stream

Timing Analysis

Az KIF 64 Qa (G4KS YIFIEAYIf R
A2 KI G Q& 0 KS-to¥ehdieldlay? f Sy
X X

0 U B SR

L S
Input Stream g, ‘\‘ '4 \,{ o L Output Stream
o [} K « °
0 D 0 ’ O

- :HEGA

Input Stream Output Stream

ttt, ’é’cuﬂ'f--... S 1

Timing Analysis
eyt

Input Stream

T ﬁ TT » ;CU ﬁ'-‘.::::. \»G_______> T TT ﬁ _

L Pttt

Output Stream

Input Stream Output Stream

A TaskLevelTiming Analysis
i Find outthe resource requirement foeach task
I WCET estimation

A SystemLevel Timing Analysis
i 1 O0O2NRAY3I G2 GKS 2/ 9¢3 for@ndzRasksS (i A
I SchedulabilityAnalysisRResponse Timénalysis)

Workload models

i Periodic/sporadic models [Liu Bayland 1973]
i Tree/Graphbased modelsBaruah Stiggeet al RTSS 2013]
i Timed automataAluz ™ ¢ éemsmareX al 2002, UPPAAL & TIMES]

X=95
A ahLISNI A2 Y telbase paterRsfxedutions @
x=0

A dDenotationak Models: resource requirement over time
i Demand (Request) Bound Functiobd3F) Baruahet al, 1990%
i RealTime Calculus (with origin from Network calcylus

x:=0 @

0L no

[Thiele/Samarjith n nn X Ddztry Sa Ff we{{

Input Stream Output Stream

Mt o [ot 1AL

’_E"cu ¢ —=-RRGA Mot Low M,

by

Input Stream Output Stream

jobs

x=13

oljZpo

HANMO B

time

0 LJ

Expressiveness vs. Analysis Efficiency

difficult high

: ps,eud-Q Poly nomia

Expressiveness

Feasibility test

efficient low

Expressiveness vs. Analysis Efficiency vs. Analysis Precision

difficult Exact high
A
+ " oseudo-Polyro™? [0
3 - I 2
o @
z S :
" n
2 | 4
m +—
b 2] 3
<
efficient low

Approximate

OUTLINE

A An Overviewon RT workload models
I from the simplest to the most complex
I from Liu &Laylandclassic periodic model to timed automata

A Recent Results

I the graphbasedmodel [RTAS 2011RTSS 20135tigge& Yi]
A Combinatorial Abstraction foSchedulabilityAnalysis

Modeling a system faanalysis

A System = a set of Tasks

Task 1 Task 2 O O O Task n

A Tasks releasing jobs,= (e, di- basic unit of workload
I Release timer

T Worstcase execution time e) _S_clwﬁd_ul_in_g_uihld_oiv_ i
I Deadline d]‘ o 1 [
t
A Job release patterns: r d

i LISNA2RAOAGRE: ON} YOKAY 3 &0GNHzZOGdzNBaszx f 22L

@ Typical task code structure:

loop
// Execute some function for, e.g.,

// up to 1llms
// (obtained via WCET analysis)

delay until Previous_Period + 50ms;
end loop;

@ Periodic Task

» Execution time e = 11ms of each job
» Period p = 50ms
» Implicit deadline d = p for each job

The Liu and Layland Task Model 1973

@ Each periodic task defined via 2 numbers:

» Job WCET e
» Minimum inter-release delay p (implicit deadline)

¥

SRR
- e e
(e.p) P—— O —
p p
o Task set 7 = {71,....7,} with 77 = (&, p;)

@ How to schedule these tasks?

» Static/fixed priority scheduling (e.g. RM)
» Dynamic priority scheduling (e.g. EDF)

e How to analyze schedulability?

The Liu and Layland Task Model: Schedulability

@ Static priority scheduling
» Response time analysis for all tasks

Ri—et 3 |2 -q

Jj€hp(i)

* Compute iteratively; compare with p;
* Precise test (sufficient and necessary)

» Utilization test
* Define U; := e;/p; as utilization of task 7;
* 7 schedulable if . U; < n(2"/" — 1)
* Only sufficient test

@ Dynamic priority scheduling
» Just focus on EDF, it's optimal
» Simple and precise test:) . U; <1

Hierarchy of Models

difficult
) oy SINP hard
Strongly \“ -
E d l-:‘-s;-.;dFor polynomial
.H
£
0
n
o
L

efficient

high

Expressiveness

low

Hierarchy of Models (uptoRTSS 2011)

difficult
4
T
Q
=
==
iy
0 tree @ branching
T =
b
¥
LL
cycle graph G@ different job types
three integers @@ explicit deadline
L 4

efficient two integers L&l implicit deadline

high

Expressiveness

low

[Baruahet al 2003, RTSS 2010]

The Recurring Branching (RB) Task Model (cont.)

@ Introduces branching structures

@ A tree for each task
» Vertices v: job types with WCET and deadline (e(v), d(v))
» Edges (u, v): minimum inter-release delays p(u, v)
» General period parameter P

'r----'\

Period P = 57

-

'Restrictions of DAG/RRT model .

@ lasks are still recurrent

» Always revisit source J;
» No cycles allowed!

Restrictions of DAG/RRT model

@ [asks are still recurrent

» Always revisit source J;
» No cycles allowed!

e Consequences:

» No local loops

Restrictions of DAG/RRT model

@ [asks are still recurrent

» Always revisit source Jy
» No cycles allowed!

@ Consequences:

» Not compositional
» No Jocal loops (for modes etc.)

[Stiggeet al RTAS 2011]

The Digraph Real-Time (DRT) Task Model

e Branching, cycles (loops), ...

@ Directed graph for each task

» Vertices v: job types with WCET and deadline (e(v), d(v))
» Edges (u, v): minimum inter-release delays p(u,v)

(2,5)

DRT: Semantics

(3,8)

(5,10)

DRT: Semantics

(3,8)

(5,10)

| | |
0 10 20 28
|- - - - - - - —— — — — — — >

DRT: Semantics

Hierarchy of Models

difficult
-+ . .
$ arbitrary graph DRT branching, loops, ...
= -
==
ot
O tree @9 branching
T =
b
Q
L
cycle graph @@ different job types
three integers @@ explicit deadline
A 4

efficient two integers L&l implicit deadline

high

Expressiveness

low

How to check the feasiblility?

The Demand Bound Function [Baruahet al]

@ General tool/technique for EDF schedulability analysis: dbf(t)
@ Intuition:

» Given a time interval length t
» dbf(t) bounds the demand for processor time within any t interval

A 15 ~, Jl: 15

Example: L&L tasks, p)

dbf,(t)

Example: Sporadic tasks; di, pi)

dbf, (t)

dbf. (t)
& { .

(J’,’ Pi

dbf{t) = Y e -max {{’}, r diJ + |}
O

TET

Feasibility Test Using dbf/()

Theorem
A task system T is preemptive uniprocessor feasible iff:

VE>0:) dbfr(t) <t
Ter

@ Challenges:
@ How to calculate dbfr()?

@ How to check existence of a violating t7

Feasibility Test Using dbf()

Theorem
A task system T is preemptive uniprocessor feasible iff:

Wt>0:) dbfr(e) <t
Ter

dbf(t)

r
f
=T ab()

|
/ ___.."
[¥ T

Bound

@ Challenges:

@ How to calculate dbf7()7? There exists &30 LN 0
@ How to check existence of a violating t? for systems where the

Worst-case utilizatiorC
(longterm rate) is less than 1

Calculating the Bound

dbf(t) dbf(t) is bounded by Crax + t*c

¢ Linear bound for dbf(t)

» Slope: Less than 1
C‘nax: sum of WCETSs for all jobs

C=Nnthe -wasstuti |l
(note: c<1)

Calculating the Bound

dbf(t) .
o d‘ﬂﬂt},ﬂ‘ S
Lin. ,:T“ - dbf(t)
»
D

¢ Linear bound for dbf(t)
» 5Slope: Less than 1

o Intersection with t gives bound D

@ Check only up to D

Calculating demand pairs for graph models

@ Recall Task Model:

Exec. demand:
e=1+4+5+4+2=8

Deadline:
d=11+10+ 10 =31

Demand pair: (8,31}

@ For each path, we have:
@ An execution demand e

Q@ A deadline d for this demand g _ ’—I_Ija,al:;.
» d

e Call (e.d) a demand pair |

[Stiggeet al, RTAS 2011]
Path Abstraction: Demand Triples

e Extend (e, d) with end vertex v
e Call (e,d.v) a demand triple

o Allows extensions to create new triples

Demand triple: (8,31, Js)

References

W M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time
Task Model,” in Proc. of RTAS 2011, pp. 71-80.

Path Abstraction: Demand Triples

e Extend (e, d) with end vertex v
e Call (e.d.v) a demand triple

@ Allows extensions to create new triples

10 - 1 _»e (10,41}
(8,31)

Determine dbf iteratively:
Demand triple: (8,31, Js) © Demand triples for 0-paths

New demand triple: (10,41, 4) © Extend demand triples

@ Take maximum

lterative Procedure

e Start with just the vertices (0-paths)

lterative Procedure

e, dbfr(t)

@ Start with just the vertices (0-paths)
@ [hen, at each iteration:

@ Extend current demand triples
@ Optimization: Discard non-critical triples on the way

@ Finally: dbf+ is maximum

lterative Procedure

@ Create all demand triples up to D:
© Start with all 0-paths, i.e., (e(v),d(v),v) for all vertices v

© Pick some stored demand triple (e, d, u)
© Create new demand triple:

* Choose successor vertex v of u
* e =e+e(v)
* d'=d—d(u)+ p(u,v)+d(v)
* (&', d’,v) is new demand triple!
Q Store (e',d",v) if
* not stored yet, and
* d' <D
© Repeat from 2 until no change

@ Efficient procedure!

» Note: Actual paths never stored
» Optimizations: Discard non-critical triples along the way

DRT Schedulability: Summary

@ Schedulability test for EDF, based on dbf

@ First, compute utilization for all tasks
» Based on most dense cycles in graphs

@ Derive bound D

e Compute dbf(t) for all t < D

» Uses iterative procedure with demand triples
» Path abstraction to reduce complexity

o If t < D with dbf(t) > t found: 7 unschedulable

@ Else: 7 schedulable

Hierarchy of Models [Stiggeet al, RTAS 2011

difficult high
A
_hard
Strongly \C IN_P ______________________
Figsje;dﬂo—?o\yﬂﬂm"al ST
E arbitrary graph DRT branching, loops, ... 5
4 + —
L
n =
— _ 0
0 tree @@ branching Y
;T Y —
3 3
Q
L Ll
cycle graph G@ different job types
three integers @'@ explicit deadline
A 4

efficient two integers L&L) implicit deadline low

~

Al 26 | 02dzi A8y OKNRYAI |
Al 24 | 602dzi a3SYSNJIf 2y

www.timestool.com

Task AutomataFersmainyi et al, TACAS 2002/TIMES tool]

o Task releases modeled by timed automata

o Advantage: Very expressive

o Disadvantage: Schedulability test expensive (or even impossible)

States/Configurations of automata

A state is a triple: (m, U, Q)

/

Location
(node)

v
clock assignment job queue
(valuation)

Feasibilitylschedulabilityis a reachability problem for timed automata

/| 2RS (0KS LINRofSY | yR dz
44

Hierarchy of Models

difficult
Timed automata
1 A
_harc
cﬂmngﬁﬁf “‘ ‘JN-P_ ll:?'i -------------------
" Pee ;dﬂo—F'DW“Dm"al o
+2 Pse . i
$ arbitrary graph @RT branching, loops, ...
e -
==
ot
0 tree @B branching
% F
Q
L
cycle graph @@ different job types
three integers @'@ explicit deadline
A 4

efficient

two Iintegers L&L implicit deadline

Expressiveness

low

Al 2¢g | o2dzi aadl A O LINA 2 NJ

Hierarchy of Models [StiggéWang, ECRTS 20121

difficult high
A
Task automaD
A
2
=
<
> . : : A
8 arbitrary graph G‘FTT branching, loops, ... g
L
S 2
w0

tree RB branchin v,
? ree C g d
S <
E_ L
o cycle graph @@ different job types
) Fy
© ard s | ==
(..,_a) Strong‘VNPh_ — - — —

three integers @@ explicit deadline
L 4

efficient two integers L&L) implicit deadline low

Summary

Models Analysis Complexity
Feasibility-- EDFschedulability Staticpriority Schedulability

Timed Automata Strongly NFhard
Generalgraphs(Digraph) PseudeP Strongly NFhard
Trees/DAGS(RRT) PseudeP Strongly NFhard
Cyclic graphs (GMF) PseudeP Strongly NFhard
SporadicD<T PseudeP PseudeP
SporadicD=T (ayland& Liu) Linear PseudeP

[StiggéWang, ECRTS 2012]

A Static priorityschedulabilityis StronglyNP-hardfor all except
L&L (and sporadic) model

A What to do?

OUTLINE

A An Overviewon RT workload models
I from the simplest to the most complex
I from Liu &Laylandclassic periodic model to timed automata

A Recent Results

I the graphbasedmodel [RTAS 2011RTSS 20135tigge& Yi]
‘ A Combinatorial Abstraction Refinement f&chedulabilityAnalysis

Problem setting

4/9 ./3\.

ority fea H?

Problem setting

O

Is C lowest-priority fe?Sffer?

Sl]

Scheduling window of C

Problem setting

SO

(Is C lowest-priority fe?smfe?

A1 Bs A3

Scheduling window of C

Problem setting

SR

[Is C lowest-priority feasﬁ;:’e?

Az, Br, At Bs Az

Scheduling window of C

[Problem: Combinatorial Explosion !’]

Every Request Function corresponds to an execution path in the graph

